
111OO11

+ 111- 4

C o n t r o l t h e c o mp u t e r
o f t h e l u n a r m o d u le'

1110011 © 2016-2018, Pablo Garaizar Sagarminaga
CC BY-SA-NC

www.compus.es

In 1969, millions of people in the Earth were following by TV the events that happened
384,000 km away. Three minutes before landing on the Moon, the on-board computer of
the Eagle lunar module triggered several alarms. Due to a ��aw in the manuals, a radar not
needed for landing was switched on when it should be switched off. This radar
overloaded the on-board computer, which was taking care of all the operations involved
in landing. Luckily, the software that managed the on-board computer was designed by a
team of engineers leaded by Margaret Hamilton, and it was intelligent enough to detect
the problem. The computer alerted the astronauts, saying, "I am overloaded with more
tasks than I should be doing right now, so I'm going to focus only on the important tasks,
those that have to do with with landing." Remember it was a computer with less
computing power than a digital clock. Without this novel and intelligent design, the "small
step for man and great leap for Humanity" would have ended in total crash.

It took more than 30 years before NASA recognized Margaret Hamilton's merit. Hamilton
was the director of MIT's software engineering center in charge of develop the onboard
software for the entire Apollo program, the only one that has been able to to let us step
on other worlds and come back safely.

MOON is an educational game for 1 to 4 people (estimated minimum age to play: 11 years and
older).

Playing MOON you will learn how to count in binary, perform logical operations and ��nd out
how a computer works while you're having fun.

In MOON, each player will simulate being a computer program and try to get the desired
result (a combination of bits) before the others.

1110011

SET UP

1. Place the 4 CPU registers and their corresponding bits switched off in the middle of the
table. If this is your ��rst game, we recommended you to start with 4 bits per register.

2. Place the operation cards on the left of the central board, sorted according to their
cost of power: ��rst those that cost 2 power units (INC, DEC), then those the ones that cost 1
power unit (NOT, ROL, ROL, ROL, MOV), ��nally those that cost 1/2 power units (OR, AND, XOR).

3. Shuf��e the goal cards and place the deck on the right side of the registers.

4. Give each player a RAM card and place as many bits as necessary near to them.

1

operation cards

RAM module

registers A, B, C y D
of the CPU

goal cards

power units

Both the individual RAM modules and the CPU registers have several bits that work as binary
counters. Each bit has an associated number (from 1 to 8 in 4-bit registers). If all the bits of a
register are switched off, the value zero is stored.

This operation is used on a single register and costs 1 power unit. It inverts every bit on the
register, that is, it converts the zeros (bits switched off) into ones (bits switched on) and vice
versa. This involves �� ipping all the bit cards of a register.

2

MOON simulates a real computer. Operations modify data in the same way it happens in
real microprocessors. Therefore, we think it is a good idea to remember some computer
related concepts before you start playing.

COUNTING IN BINARY

If there are bits switched on, you have to add the numbers
placed on the top of the CPU to know what number is stored.

 For example, this combination represents the number 3 because
 the bits of positions 1 and 2 are active, so 1 + 2 = 3.

This represents the number 9 because the bits of the
positions 1 and 8 are activated, so 1 + 8 = 9.

OPERATIONS

To change the bits of the CPU registers we use operations:

NOT

3

This operation is used on a single register and costs 2 power units. It adds 1 to the total
value stored in the register:

INC

. If the register stores the maximum value (all bits switched on), the register is reseted to 0:

DEC
This operation is used on a single register and costs 2 power units. It subtracts 1 to the
total value stored in the register.

If register stores the zero value, subtracting 1 will set all the bits of the register to one.

4

This operation is used on a single register and costs 1 power unit. It involves rotating
every bit on the register to the left and placing the remaining bit on the left in the
rightmost position:

ROL

Trick! In many cases, it is equivalent to multiplying the value of the register by 2:

ROR
This operation is used on a single register and costs 1 power unit. It involves rotating
every bit on the register to the right and placing the remaining bit on the right in the
leftmost position:

Trick! In many cases, it is equivalent to dividing the value of the register by 2:

5

This operation is used on 2 registers or a register and a RAM moduleand costs 1 power
unit (1/2 in competitive mode).

MOV

OR
This operation is used on 2 registers and costs 1/2 power unit.

This operation copies all bits from one register to another, overwriting the value stored
in the destination (it is very useful to copy a value in your RAM and recover it later to
prevent other players modifying it).

It involves comparing each bit of one register with the corresponding bit of the other
(the 1st bit with the 1st bit, the 2nd with the 2nd, etc.). If any of the bits is switched on,
the resulting bit is switched on (otherwise, the resulting bit is switched off).

The ��nal result of all these comparisons is stored in the ��rst register (the second is not
modi��ed):

6

This operation is used on 2 registers and costs 1/2 power unit.

AND

This operation is used on 2 registers and costs 1/2 power unit.

This operation involves comparing each bit of one register with the corresponding bit of
the other (the 1st bit with the 1st bit, the 2nd with the 2nd, etc.). If both bits are switched
on, the resulting bit is switched on (otherwise, the resulting bit is switched off).

This operation involves comparing each bit of one register with the corresponding bit of
the other. If both bits are different (one is switched on and the other is switched off), the
resulting bit is switched on (otherwise, the resulting bit is switched off).

The ��nal result of all these comparisons is stored in the ��rst register (the second is not
modi��ed):

 ORX

The ��nal result of all these comparisons is stored in the ��rst register (the second is not
modi��ed):

7

Trick! If you need to reset a register (all the bits switched off), you can use a XOR where
the source and destination register is that register (example: XOR of A with A) because all
bits are the same.

COMPUTERS ARCHITECTURE
Finally, let's review some important ideas about the internal architecture of a computer:

 ORX

In order to achieve their purposes, programs do
operations on the CPU. When a program runs, it can
use any register (A, B, C and D) to perform
operations, but the result has to be stored in the A
register.

In MOON, this means that any player can modify any
CPU register in her turn, but you will have to achieve
your goal in the A register to win.

The operating system assigns time to programs to run.
When they run out of time, they have to leave the CPU for
other programs.

In MOON, each player has several power units for every
turn. You will use them to perform operations and then
leave the CPU registers to the next player.

Since all programs share the CPU, a partial results
should be stored in the RAM memory. Contrary to
what happens with the CPU registers, the RAM
memory of each program is protected from other
programs.

In MOON, each player has an individual RAM module
where you can copy any of the values from the CPU
registers (using the MOV operation) before your turn
ends. Then you can copy it back to any register of the
CPU (using MOV again) during your next turn.

COOPERATIVE MODE
Both the CPU registers and the individual RAM modules can be used with 4, 5 or 6 bits.
For the ��rst games, we suggest using 4 bits.

 ORX

Set up the game as explained on page 1 of this
manual.

At the beginning of the game, draw a card from the
deck of goal cards and place it in front of the deck by
the side where you can see the combination of bits:

To win, you must solve all the goal cards in the deck.

Goal cards have combinations of bits that you have to store in register A of the CPU.

In each turn, each player can perform as many operations as they wish depending on the
power units available (remember that there are operations such as OR that require 1/2
power units, while others like INC require 2 power units). It's not mandatory to spend all
power units in one turn and it is not possible to share the power units which other players.

Operation cards perform operations on the A, B, C and D registers of the CPU. Any
player can modify the values stored in all the 4 CPU registers, but they cannot
copy or modify the values stored in the the RAM modules of other players.

At the end of the round, you have to advance the goal cards up one position,
draw a new goal card from the deck and place it in front of the deck:

If a goal card advances to 5th position, at the end of the round, the
game is over and your mission failed.

This can happen even if there are no target cards left in the deck but it
takes you more than ��ve rounds to solve the last goal cards.

On the other hand, if you manage to solve all the goals of the deck
promptly, you win.

8

X X

9

Moreover, there are goal cards they have that don't have
a combination of bits but a bug.

These special cards cannot be discarded and they will
block one of the positions of the list of pending goals for
the rest of the game.

You can addapt the dif��culty of the game depending on the number of players and
your skills varying the number of power units per turn, the size of the deck of goal
cards and the number of goal cards that will initialize the registers.

In the novice level, draw the ��rst 3 goal cards and place their values in registers B, C,
and D respectively. In the medium level, the same is done with the ��rst 2 goal cards. In
the hacker level, the A register is initialized to the value 1 (off-off-off-on), and the rest
of the registers are reset to 0.

1 5 8 +
2 5 19 +
3 4 12 +
4 4 16 +

1 4 8 +
2 4 10 +
3 3 12 +
4 3 16 +

NOVICE LEVEL
4-BIT 6-BIT

1 3 8 +
2 3 10 +
3 2 12 +
4 2 16 +

1 1.5 8 +
2 1.5 10 +
3 1 12 +
4 1 16 +

HACKER LEVEL
4-BIT 6-BIT

1 4 8 +
2 4 10 +
3 3 12 +
4 3 16 +

1 3 8 +
2 3 10 +
3 2 12 +
4 2 16 +

MEDIUM LEVEL
4-BIT 6-BIT

10

In the case of the 6-bit version, the goal cards must be solved in pairs (the left card for
bits 32 and 16, and the card on the right for bits 8, 4, 2 and 1).

However, only one new goal card will be drawn at ��nal for each round (this reduces the
pace of the pending goals queue increase compared with the 4-bit version):

YOU SOLVE
A GOAL

SHOW THE NEXT
GOAL

AT THE END
OF THE ROUND,

YOU DRAW ONLY
ONE NEW GOAL CARD

If the hacker level is a piece of cake for you, you can increase the dif��culty adding the
event cards into the goal card deck. RESET cards reset (all bits switched off) registers:

ERROR register cards disable the register for the rest of the game, unless you ��x it
using an OK card:

ERROR instruction cards disable the instruction for the rest of the game, unless you ��x
it using an OK card.

11

COMPETITIVE MODE
Both the CPU registers and the individual RAM modules can be used with 4, 5 or 6 bits.
For the ��rst games, we suggest using 4 bits.

 ORX

Set up the game as explained on page 1 of this
manual.

Each player chooses a RAM card and sets all bits of
the RAM module to zero (switched off).

Distribute the power units to each player according to the version (4-6 bits) and the level
(novice, medium, hacker) of each player:

Shuf��e the deck of goal cards and place it to the right of the CPU.

In 4-bit games, each player draws a goal card, sees it and places it next to her RAM
module without showing the corresponding combination of bits.

In 6-bit games, each player draws two goal cards and place them one on each side of
her RAM module: the card on the left corresponds to bits 32 and 16 of register A, and the
card on the right, to bits 8, 4, 2 and 1.

APRENDIZ NORMAL HACKER

4-bit 4 3 2

6-bit 5 4 3

NOVICE MEDIUM HACKER

12

Goal cards have combinations of bitsthat you have to store in register A of the CPU.

In each turn, each player can perform as many operations as they wish depending on
the power units available (remember that there are operations such as OR that require
1/2 power units, while others like INC require 2 power units). It's not mandatory to spend
all power units in one turn and it is not possible to share the power units which other
players.

Operation cards perform operations on the A, B, C and D registers of the CPU. Any player
can modify the values stored in all the 4 CPU registers, but they cannot copy or modify
the values stored in the the RAM modules of other players.

Every time you manage to have the combination of bits of your goal card in the register
A of the CPU, you have to show your goal to the rest of players. Then, save it for the end
of the game and draw another goal card from the deck.

= =

In the case of drawing a bug card, you have to show it to the rest of the players and save
it for the moment when you want to hack other player (bug cards do not count as goal
cards at end of the game). In competitive mode, a bug card can be used to force other
player to show the goal card. After using it, the hacked player gets the bug card and
may use it at any time against any player.

When a player takes the last goal card from the deck, the game is over at the end of the
round. Then, the player that solved the highest number of goal cards wins the game.

13

 ORX

HACKERS

In each goal card there is an acronym that corresponds to extra operations that you can
perform once after achieving that goal.

XCHG works as a bidirectional MOV, it exchanges the values of two registers.

SHL and SHR works similarly to ROL and ROR respectively, but the bit that is left out
always becomes a zero (example: SHL of 1011 = 0110).

ADD and SUB allow you to arithmetically add and subtract two records (examples: 0101
ADD 1010 = 1111 and 1101 ADD 1000 = (1)0101, the ��rst 1 is discarded if we use 4-bit registers).

NOR, NAND, XNOR are the combination of OR, AND or XOR and then a NOT (for example,
the result of a NOR operation will be 1 only if the two entries are 0).

MOON is a modular game that you can adapt to your needs. For example, very novice
players can avoid using logical operations (OR, AND, XOR) in their ��rst games. On the
other hand, expert players can play with 8 bits, just putting two MOON games together.

In addition to this general recommendation, we end this handbook by explaining two
more extra features that can enhance your gaming experience.

E TRASX

E TRA OPERATIONSX

111OO11

