
BUILD - RUN
IMPROVE - REPEAT
A game about implementing and improving

your DevOps cycle

Facilitator's guide

SimuLearn

this page is intentionally left blank

Build – Run
Improve – Repeat

A game about implementing and improving
your DevOps cycle

Table of Contents
 1 Version history...3
 2 Introduction...4
 3 Concept of the game..5

 3.1 Objective..5
 3.2 Starting point..5
 3.3 The performance levels of the DevOps-activities..6
 3.4 Elements of the game...9

 3.4.1 Board..9
 3.4.2 Cards..9
 3.4.3 Tokens..10
 3.4.4 Dice..11

 3.5 Having features implemented..11
 3.5.1 Cadence..11
 3.5.2 Create value, create revenue, invest...12
 3.5.3 Don’t go bankrupt..12

 3.6 What can possibly go wrong?..12
 3.6.1 Incident types...12
 3.6.2 Incident severity...13

 4 Let’s play…...13
 4.1 Participants and responsibilities...13
 4.2 Starting budget...14
 4.3 Improving your way of working..14
 4.4 Start working..15
 4.5 Implementing features according to flow and queue size..15

 4.5.1 Fast forward...17
 4.5.2 Cutting corners...18
 4.5.3 Ignoring technical debt...18

 4.6 After each round...18
 4.7 Dealing with reported security vulnerabilities...19
 4.8 Dealing with incidents...19

 4.8.1 Technical debt becomes an incident...20
 4.8.2 Change failure..20
 4.8.3 Count your losses...20
 4.8.4 Fixing an incident...21
 4.8.5 Accepting the risk...21

 4.9 Finishing feature implementation work...22
 4.9.1 Marking your progress...22
 4.9.2 System aging..22

Build – Run – Improve – Repeat .1

 4.9.3 Need for refactoring...22
 4.10 Income and investments...22

 4.10.1 When can you invest?..23
 4.10.2 Implementing improvements...23

 4.11 The game ends…...23
 4.12 How can I win this game?..24

 5 Possible scenarios..24
 5.1 Dividing or sharing decisions, budget and costs..24

 5.1.1 Dividing..24
 5.1.2 Sharing...24

 5.2 Start from performance level 0 or from your real performance level....................................25
 5.3 Force the team to implement features faster (and cut corners)..25
 5.4 Work to implement improvements or not..25

 6 Thank you..26
 7 Contact information...26

Build – Run – Improve – Repeat .2

 1 Version history

Version Date Changes

0.1 2020-06-02 Initial draft version

0.2 2020-07-14 Processed feedback

0.3 2020-10-30 Improvements after tryouts
• variability of incident cost
• extra operate aspects
• extra incident types

0.4 2020-12-27 Made a distinction between treating a CVE and an incident: different
pawn

1.0 2021-02-20 First major version
Implemented major improvements from previous tryouts:

• technical debt introduced
• tokens with symbols instead of pawns
• accept risk of incidents instead of fixing them
• implement improvements

1.1 2021-08-18 Added follow-up of implemented features + system aging/degrading, the
risk of failing changes and the need for refactoring.

Build – Run – Improve – Repeat .3

 2 Introduction
At the time of the initial creation of this game I am part of a team that introduces and supports cloud
native development. My role is to take care of DevOps-related processes and responsibilities, like
testing, security and release management. I don’t remember what exactly happened that particular
day when I got the initial idea to make a game about DevOps. It probably had to do with some
misconceptions about DevOps and CI and CD in particular. That event made my mind wander…
Wouldn’t it be great to make a DevOps game, to deal with these misconceptions?

One of these misconceptions about DevOps is that people often think in the first place about
delivering faster to production. That is only a small part of the story: Continuous Delivery (CD) is
always preceded by Continuous Integration (CI). In other words: first focus on delivering quality
then on delivering faster – and beyond off course, operate and monitor. But DevOps is more than CI
and CD. It all starts with the mindset. This game focuses on the full DevOps cycle:

• The development part of the cycle is not new. We know it from eXtreme Programming: from
Plan, over Code and Build to Test. This part focuses on delivering quality and get fast
feedback from the code you checked in. This is the core of agile software development.

• The Operations part closes the cycle. This is the new part that builds upon the foundations of
quality software development, with continuous automated testing as the linking pin to be
able to Release, Deploy, Operate and Monitor.

Since the left part of the cycle is the oldest, focusing on delivering quality, which is the part you
need to invest in first? Exactly: the left part of the cycle. Doing the wrong investments, or
implementing things in the wrong order will have some pretty bad consequences. And that is
exactly what this game aims to do: experience the impact of taking the wrong decisions when
implementing DevOps in your organization.

This is the 2nd game I make, after the Scrumban simulation. I know that the best known DevOps
related simulation is The Phoenix Project Game, based on the bestseller novel “The Phoenix
Project”. It covers the whole spectrum of DevOps, not only the automation part. But The Phoenix
Project Game takes at least half a day and preferably a full day to do, which is a lot of time, and you
need to attend a train-the-trainer session first, before you can facilitate that simulation. It also aims
at management and business understanding of DevOps principles. This is not my objective: I
wanted to make a game that focuses specifically on technical aspects of DevOps, that can be done
in a team within a time slot of an hour and a half or 2 hours.

I definitely hope you like it and you can use it in your own professional context.

Koen Vastmans, SimuLearn
October 2019 – August 2021

Build – Run – Improve – Repeat .4

 3 Concept of the game

 3.1 Objective
The objective of the game is to experience how improving your development and operations
activities and evolving to a DevOps approach will speed up the delivery of value and also improves
the quality of what you deliver, which dramatically reduces the risk of service unavailability caused
by bugs or security breaches. Initially these improvements will go slow, but once you have reached
the tipping point, delivery and improvement intervals will become shorter and shorter. That’s
exactly what thorough research on the findings of the annual DORA report has discovered.

Participants of the game will also experience that doing the wrong investments – in the wrong order,
that is – will have the opposite effect on your quality.

 3.2 Starting point
The concept of this game is based on the infinite loop of DevOps:

The colors of the loop make a distinction between typical development activities (in blue) and
typical operational activities (in orange). The darker blue arrow in the middle, Continuous testing, is
the linking pin to smoothly go from development to operations.

Each stage of the loop has a number of activities and each activity has 4 performance levels, from 0
to 3, similar to low, medium, high and elite performers as mentioned in the DORA report and the
book “Accelerate – The science of DevOps” (subtitled “Building and Scaling High Performing
Technology Organizations”) from Nicole Forsgren, Jez Humble and Gene Kim.

The starting point of the game is a board with all activities on performance level 0. This means:

• you work in a typical project oriented waterfall approach

• with strict separation of duties between development and operations activities

• with lots of manual activities

• and limited quality controls

Build – Run – Improve – Repeat .5

 3.3 The performance levels of the DevOps-activities
You can step up the performance ladder in each activity by investing (part of) your profit in improvements.

These are all the activities/aspects of the development stages and their maturity level:

Stage Activity Performance level 0
Low performers

Performance level 1
Medium performers

Performance level 2
High performers

Performance level 3
Elite performers

Plan Approach Project approach with
big specification up-
front (“waterfall’”)

Iterative project
approach (agile/
”Scrum” principles &
techniques)

Iterative product
approach, driven by
product backlog

Flow of changes
(Kanban-style)

Team Separate build and
maintenance team

technology knowledge
divided over different
teams (change request
driven)

all required knowledge in
the team

generalizing
specialists

Work visualization Nothing only planned work only own work all work is visualized

Code Quality Nothing Coding guidelines Manual reviews Automatic code scans

Versioning Nothing Just versioning Branching per release Trunk based
development

Security Nothing secure coding
guidelines

External library scans code scans (SAST
tool)

Build Approach Manual build Scheduled nightly scheduled every hour upon commit

Breakers compilation errors failing unit tests code quality scans Security scans

Test Approach Manual testing in UAT Automated functional
tests (unit, integration)

Automated non-
functional tests (stress,
load)

Chaos injection in
production

Build – Run – Improve – Repeat - 6 -

Stage Activity Performance level 0
Low performers

Performance level 1
Medium performers

Performance level 2
High performers

Performance level 3
Elite performers

Responsibility Business is responsible Business and IT all do
their part of the tests
(overlap)

Business and IT do their
part of the tests (no
overlap)

Shared responsibility:
business decides what
to test, IT decides how
to test it

Security Nothing Penetration testing
before going to
production

Recurring penetration
testing

DAST tool
continuously scans
behavior or running
application and reports
vulnerabilities

These are all the activities/aspects of the operations stages and their maturity level:

Stage Activity Performance level 0
Low performers

Performance level 1
Medium performers

Performance level 2
High performers

Performance level 3
Elite performers

Release Approval Separate release
management team
guarding over the
planned changes and
their impact

Business go-no go
meeting

Product owner Team – 4 eyes
principle

Activate upon deploy fixed date, via feature
toggles

on demand
Via feature toggles

On commit
Only with trunk based
development

Deploy Frequency Quarterly Every month Every week Constant flow
Only with Kanban-
style plan approach
and trunk-based
development

Build – Run – Improve – Repeat - 7 -

Stage Activity Performance level 0
Low performers

Performance level 1
Medium performers

Performance level 2
High performers

Performance level 3
Elite performers

Code Manual deploy
Separate team

Automated build Automated deploy to test,
manual approval for UAT,
production

Automated deploy to
production
Only with Kanban-
style plan approach
and trunk-based
development

Infrastructure Know your colleague:
call the infra guy to do
the changes

Get infrastructure
changes via service
request

Changes to infrastructure
are done via self service

Infrastructure as code,
part of your source
code repository

Operate Team Segregation of duties closer collaboration
between dev and ops
team

shared responsibility
between dev and ops
team

you build it, you run it
E2E team
responsibility

Availability Only 1 production
instance

Cold standby Hot standby Load balancing and
failover

Capacity No capacity
management in place

Fixed capacity, based
on historic usage and
capacity metrics

Elastic (manually sized)
capacity, based on
historic usage and
capacity metrics

Automated capacity
management based on
usage metrics and
feedback

Monitor Approach Nothing Information radiators
followed up by a
separate team

Automatic escallation to
team members

Self-healing & self-
learning system

Build – Run – Improve – Repeat - 8 -

 3.4 Elements of the game

 3.4.1 Board

This is a board game, so
the heart of this game is
the board. The board
represents all the different
DevOps stages, visualized
in the infinite loop. Each
stage contains several
activities. The board
contains placeholders for
all these activities. This is
where you put the
corresponding cards. At
the start of the game you
put all the cards of the
zero performance level on
the board.

 3.4.2 Cards

The cards are the driving elements of the game. They represent your performance level. You start
with the zero performance level of all activities of the DevOps stages (depends on the scenario you
choose – see Possible scenarios). The investments you can do to improve your maturity are
represented by a card you can buy and place at the activity.

Cards have 2 sides. You can only see the front side of the cards for now. The back sides can only be
viewed in case of an incident. Each card front contains the following information:

• The stage

• The activity

• The performance level + description

• The implementation cost

• The queue size – how many items need to be at that activity before
you can on to the next activity

• The flow – restrictions about moving features from one activity to
another

Build – Run – Improve – Repeat .9

The back side of the cards contains:

• The stage

• The activity

• The performance level

• What can cause this impact:

◦ a bug

◦ a security breach

◦ excessive load

◦ a performance issue

◦ a system outage

• The cost of fixing the incident

• An explanation of the cost

The reason why you should keep the cards face up, is because you cannot know what the cost of an
incident will be up-front. This would influence your investment decisions and one of the aims of the
game is also to experience what the impact of wrong decisions is.

You cannot immediately buy the performance level 3 card of an activity if you are still at level 0.
You really need to go step by step: first invest in level 1 improvements, then level 2 and finally level
3. Why? Because each higher level builds upon the previous levels. But in which order you invest
and where you invest more initially, is entirely your decision.

 3.4.3 Tokens

Tokens represent work. There are different kinds of tokens, in different colors, with different
symbols, representing different kinds of work:

Blue token
A feature to be implemented

Green token
An improvement to be implemented

Orange token – only this symbol
A reported security vulnerability to be fixed

Build – Run – Improve – Repeat .10

Orange token – different symbols
Technical debt to be solved

Red token – different symbols
Incident to be fixed

Tokens need to be moved across the board, according to the value of the die and the indicated flow
and queue size. Features and technical debt follow the same cadence, as indicated in Plan –
approach. Improvements can follow their own cadence. Incidents and reported security
vulnerabilities need to be fixed as soon as possible.

 3.4.4 Dice

There are 2 dice in the game:

• 1 normal die, for the number of moves each participant can make

• 1 special one, for the incidents

The normal die is simple: you throw a 1, you move 1 token, you throw a 6, you move 6 tokens.

The incident die has special symbols:

Reported
security

vulnerability

Bug Security
breach

System outage Unexpected
load

Performance
issue

The usage of the die is explained in the paragraph “What can possibly go wrong?”.

 3.5 Having features implemented

 3.5.1 Cadence

Each activity indicates the cadence: this means the number of tokens that need to be in the activity
before you can move on to the next activity or stage. Typically in a project oriented waterfall
approach, you move all the tokens one by one from Plan to Code. If all tokens are moved to the first
activity of the Code stage, you move all the tokens one by one to the next activity of Code, and so
on. Same with release and deploy: as long as you stick to longer deployment cycles, you cannot
move individual tokens beyond the deployment stage, no matter how your Plan approach is.

When your performance improves, you will see that you get a better flow of features across the
board, which will speed up the value creation and hence faster revenue, which allows more
improvements of your DevOps activities.

Build – Run – Improve – Repeat .11

 3.5.2 Create value, create revenue, invest

Once a token is moved to the Cash Here spot, you can remove it from the board. This is where the
value is created. Each feature that goes live (each blue token that arrives at the “Cash here” spot)
will give you 100 extra credits, but only once all features to be implemented are delivered together
(depending on queue size and flow). These credits can be invested in improvements to your
activities. And this is where the tricky bit starts: invest wisely, because doing investments in the
wrong order can seriously impact your stability and increase the cost of fixing bugs and security
vulnerabilities.

 3.5.3 Don’t go bankrupt

Make sure you don’t invest every credit you earn, because things can go wrong and that will cost
you credits. And the last thing you want, is that you cannot afford the cost of fixing problems,
because you will go bankrupt and the game ends because of your wrong decisions...

 3.6 What can possibly go wrong?

 3.6.1 Incident types

Well, everything can go wrong. And you better make sure that you have enough credits to pay the
cost of solving these incidents. After playing a round (each participant moved tokens on the board),
you roll the incident die, together with the normal die. In case of an even value, the incident occurs.
There are 6 types of incidents:

A reported security vulnerability that needs urgent mitigation
this will only cost you effort: you need to solve the issue first, instead of delivering new
features. Make sure you solve it before it becomes a security breach!

A bug that needs to be fixed
this will cost you both money and effort

• the effort is similar to the effort of mitigating a reported security vulnerability

• the cost is the sum of all impacts on the back of your cards on the board,
according to your performance level and the severity of the incident

A security breach that needs to be fixed asap
this will also cost you both effort and money

• the effort is again the effort to fix the incident

• the cost is again the sum of all impacts of your cards on the board

Your system is down that needs to be up and running again as soon as possible
this will cost you both effort and money

• the effort is again the effort to fix the incident

Build – Run – Improve – Repeat .12

• the cost is again the sum of all impacts of your cards on the board

Your system is unable to process the extra load
this will cost you both effort and money

• the effort is again the effort to fix the incident

• the cost is again the sum of all impacts of your cards on the board

Your system experiences a performance issue
this will cost you both effort and money

• the effort is again the effort to fix the incident

• the cost is again the sum of all impacts of your cards on the board

 3.6.2 Incident severity

As far as financial loss of an incident is concerned: the normal die will also have a meaning here.
Not only will the incident only occur in case of an even value. The value itself will determine the
severity of the incident, and also the multiplier of the financial loss (see the paragraph Count your
losses for details).

It is not because you are fixing an incident that takes several rounds, that nothing new can go
wrong. You still need to roll the die at the end of a day of trying to fix an incident.

 4 Let’s play…

 4.1 Participants and responsibilities
The game can be done with at least 2 and at most 8 participants. Each of the activities on the
DevOps loop require an owner, someone who takes the responsibility for improving the
performance level of the different aspects of that activity. Divide these responsibilities among the
participants of the game. You need at least 2 participants, so that you can divide the responsibility
between development and operations activities (easily recognizable by the color of the activity).
You can assign ownership of an activity via the dedicated cards:

Build – Run – Improve – Repeat .13

How you deal with these responsibilities, is up to you to decide (see Scenarios).

 4.2 Starting budget
Each game gets a starting budget of 1000 credits. This is a shared budget for all stages, all activities.
These credits need to be spent on both improving your performance level and on fixing incidents. If
and how you divide the budget among the different activities, is entirely the responsibility of the
participants.

If you have play money – like in Monopoly – you could use play money to make the spendings and
earnings more tangible, especially if you choose to divide the budget over the different owners (see
Possible scenarios). Someone will play the role of “the bank” then (like in Monopoly). But you can
also use the available balance sheet:

The sheet contains an initial balance line and lines for each spending and earning (separate
columns) and the resulting balance. In case you choose to divide responsibilities and thus also
budgets, each participant will have its own balance sheet, or 1 per responsibility domain.

 4.3 Improving your way of working
At the start of the game the participants can decide what to improve first, before they start
implementing features. Or they can simply start with the basic setup (mainly manual work) and try
to create value first (and hope nothing goes wrong...). Just make sure that there are enough credits
in case of an incident.

Depending on the time you can spend on the game, you can choose to either simply
“buy” improvements and have them immediately available or buy and implement the
improvements. At the start of the game you can simply buy your improvements, but once
you start implementing features, all improvements need to be implemented (if you

choose to do so). You take a green token and put it on the Queue here spot. They don’t have to be

Build – Run – Improve – Repeat .14

part of the same cadence of the features you implement, meaning that you don’t have to stick to the
queue size and flow of your Plan approach. Most important thing is that you dedicate someone (or a
few participants) to implementing these improvements.

 4.4 Start working
Working on a feature means moving the blue token representing that feature across the board, from
the “Queue here” spot to the “Cash here” spot. Solving technical debt (orange tokens) or
implementing improvements (green tokens) follow the same path. In case of an incident you move
the red token from the first Code activity to the “Cash here” spot (obviously: you skip the Plan-
related activities because you don’t “plan” an incident). The speed at which you can move the
tokens is determined by rolling the die. This indicates how many moves you can do on the board. In
case of features, how many moves does not mean how many positions 1 token can be moved at
once: the queue size and flow indicated on the cards determines how many tokens need to be in the
same activity before moving on to the next one. This represents a batch size, the same activity
applied to a number of features. Again, queue size and flow are not applicable to incidents: you
want to solve these as quickly as possible.

In some cases a token can skip an activity: that means that there is no specific action needed to do
this activity. This is either done automatically or there is no action at all. See further on Fast
forward.

When working on a feature or an incident, it does not matter for what activities (stages) you as a
participant are responsible: each participant can move whatever token in whatever activity. The
responsibilities only matter when improving your performance is concerned. Just go clockwise from
1 participant to the other, as in any board game.

 4.5 Implementing features according to flow and queue size
Let’s take the initial situation, where all activities have performance level 0. According to the Plan
approach, you queue 4 features and you need to move them all 4 from one activity to another.

A picture says more than a thousand words, so let’s explain visually with an example how to move
features across the board, according to the queue and flow principles.

Suppose the first person throws a 6. Then you first move all 4 tokens to the first activity:

Build – Run – Improve – Repeat .15

You have 2 more moves remaining. What you cannot do, according to the flow is moving 1 feature
2 steps further:

You can only do this:

In case you throw a 3 with the die, you can only move 3 tokens:

Build – Run – Improve – Repeat .16

Whatever value the next person throws with the die, the first move he/she needs to do, is move the 1
token that is still on the “Queue here” position, before moving other tokens.

The same cadence is applicable to fixing techical debt, but not for implementing
improvements or fixing incidents or security vulnerabilities.

 4.5.1 Fast forward

Some activities can immediately skipped, you can fast forward the implementation of your feature
or whatever type of work. This can either be:

Because an activity is not yet implemented
(red arrow)

Because the activity is automated
(arrow in the color of the activity – blue or

orange)

This will definitely speed up the implementation time, but one is not without risks…

Build – Run – Improve – Repeat .17

 4.5.2 Cutting corners

Sometimes the pressure to implement and release a new feature
is so big that you need to compromise on quality (see also
Force the team to implement features faster). This is possible
on some activities, but with the cost of technical debt
introduced in the game:

If there is only 1 symbol on
the card, you will need to
pick an orange token with
that symbol and put it on the
“Queue here” spot. If there
is more than 1 symbol on the
card, roll the special die
until you have one of the
symbols matching the ones
on the card and then put that
token on the “Queue here” spot.

You can plan solving technical debt along with the
implementation of your features, or you can ignore it for now.
Solving technical debt means that the orange token needs to be
moved until it reaches the “cash here” spot. You don’t get any
revenue though!

 4.5.3 Ignoring technical debt

If you choose to ignore technical debt and continue focusing on implementing new features, know
that this can backfire sooner or later. Unsolved technical debt might cause an incident one day…

 4.6 After each round
Once every participant has moved tokens on the board, someone has to roll the
special die, the one with the symbols, together with the normal die. This is meant
to see if a new security vulnerability is reported that needs patching or an incident
has occurred that needs fixing.

If the normal die has an odd value – 1, 3 or 5 – you can ignore the symbol of the
die. If you roll an even value, the symbol on the special die tells you what occurred

and what you need to do:

Dealing with reported security vulnerabilities

Any other value Dealing with incidents

Build – Run – Improve – Repeat .18

 4.7 Dealing with reported security vulnerabilities
When a new security vulnerability is reported (also called CVE – common
vulnerabilities and exposures), you take a security vulnerability token and put it on the
board. You want to fix these as soon as possible, to avoid bigger problems. So you skip
the Plan activities and put the token immediately on the first Code activity.

Solving a CVE means that you need to do exactly the same thing as when you implement a feature:
use the regular die to move the fix through all activities of all the stages. You can ignore the queue
size here. You want to solve this CVE as fast as possible, which means that you don’t work on new
features as long as you haven’t solved the CVE. Automatic activities (like e.g. automated code scan)
can be skipped immediately.

Once the fix has reached the “Cash here” space on the board, it is considered to be delivered. But
you don’t earn any money: this is not a feature that got delivered. Once you reach this spot, you can
remove the token from the board.

Beware! Make sure you solve this before you throw another security vulnerability with the
die. Otherwise the security vulnerability becomes a security breach. You will need to replace the
orange token with a red one and threat it as an incident! This also includes financial impact.

 4.8 Dealing with incidents
An incident occurs when one of the following values is rolled:

Normal die

Special die

As already mentioned, incidents can occur at the end of each round. But there are also other
moments when incidents can occur:

• technical debt can become an incident

• the introduction of a new feature can cause failures

In case of an incident, the normal die does not only determine whether the incident occurs or not,
but also what the severity of the incident is (see Count your losses).

Build – Run – Improve – Repeat .19

 4.8.1 Technical debt becomes an incident

If you have chosen to focus on implementing new features instead of fixing technical debt, this is
not without a risk. When you roll an incident with the same value as a technical debt item that is
still open, your incident counts double: you need to count the losses of both the new incident and
the technical debt item that has become an incident. Additionally, the technical debt item becomes
an incident, meaning that you will need to swap the orange technical debt token for a red incident
token with the same symbol.

This incident needs to be fixed (or the risk accepted).

 4.8.2 Change failure

Implementing a new feature is not without risks. Some errors can sneak in, resulting in an incident
upon activation. Whenever a new (set of) feature(s) is released (i.e. whenever all blue tokens that
need to be delivered together, have reached the “Cash here” spot), you need to roll the 2 dice again
to see if the change is successful or not. In this case only the incident symbols count: if you roll the
symbol of the security vulnerability, your change is still successful (ignore that value).

 4.8.3 Count your losses

In case of any incident other than a reported security vulnerability you have
financial impact. You have no idea what the financial impact of these
incidents is, until they happen… In that case, you flip all the cards to know
what your loss is.

Each activity card has an indication which incidents cause impact: any
combination of security breach, bug, system outage, unexpected load or
performance issue. The incident cost is the financial impact of the incident
on that particular activity, multiplied by a severity related factor. The
value of the normal die determines the severity of the incident. This is an
overview of die values, severity levels and cost multiplier:

Die value Incident severity Cost multiplier

Low priority 10%

Medium priority 50%

Build – Run – Improve – Repeat .20

Die value Incident severity Cost multiplier

High priority 100%

Sum the incident costs of all impacted activities to know your global incident cost and multiply it
by the cost multiplier corresponding the incident severity. Flip the cards back with the front side
face up.

Alternatively, if you chose to divide decisions, budgets and costs per domain (stage of the DevOps
cycle), you sum only the costs of your responsibility domain(s).

Either way, losing money means handing over bank notes to the bank or writing the losses on the
balance sheet.

 4.8.4 Fixing an incident

To fix an incident you need to take the red token corresponding the incident type and put it on the
board. You don’t “Plan” an incident, so you can skip the Plan stage when fixing it. In other words:
move the red token immediately to the first Code-activity.

To fix the incident, you need to do exactly the same thing as when dealing with a CVE: move it as
fast as possible to the “Cash here” spot. You can also ignore the queue size here, skip automatic
activities and you don’t work on new features as long as the incident is not fixed.

If fixing the problem is not done in a single round, you will still need to roll the die: in the
meantime things can still go wrong!

 4.8.5 Accepting the risk

If the severity of the incident is low, you can choose to only count the losses of the incident but give
priority to implementing new features over fixing the incident. In that case you will still need to put
an incident token on the board, but you leave it there.

Accepting the risk means that you also accept that things can get worse. When a similar incident
occurs and you haven’t fixed the previous one, you will have to:

• pay twice, for the accepted incident and for the new one

• add another incident token to the board and accept or fix the incident

Build – Run – Improve – Repeat .21

 4.9 Finishing feature implementation work

 4.9.1 Marking your progress

The righthand side of the board
contains cells with numbers. These
numbers are meant for marking the
number of features you implemented.
You use a pawn for this. At the start
of the game the pawn is positioned at
the cell with the 0. Whenever you
implement few features, you move the pawn to mark the total
number of implemented features.

 4.9.2 System aging

Through the course of time – and with more features implemented
– your system is aging, or even worse, degrading. This means that
the risk for incidents, especially during release, increases. At a
certain point – as of 13, 33 ot 53 – your system has reached a level
of complexity where the risk of failing changes is real. In that case,
when you have implemented new features, you will need to roll the
dice, to see if – and of what severity – an incident occurred during
release.

 4.9.3 Need for refactoring

At a certain point – once you reach 20, 40 or 60 – you don’t want to
take the risk of failing changes due to system complexity anymore. In that case you will need to
refactor your system. Which refactoring is required, will be determined by rolling the incident die
(if you roll the symbol of reported vulnerability, you will need to roll again). Put the corresponding
orange token on the board and plan the implementation of the refactoring.

You can ignore the refactoring, but that has consequences. As long as you haven’t
implemented the refactoring, you will need to roll the dice for each new feature release
because changes can still fail due to the complexity of your system.

 4.10 Income and investments
As already mentioned, each time a feature is delivered, it creates revenue: you receive 100 credits
for each feature that is delivered. Keep in mind though that you will only get revenue when the full
scope of an iteration or project is delivered. In other words: if you e.g. still work according to a
waterfall approach, your queue size is 4. You will only create revenue when all 4 items have
reached the “Cash here” spot.

Build – Run – Improve – Repeat .22

Delivering features and creating revenue is a good moment to invest in improving your way of
working because you get extra financial means. But it is not the only moment.

It is up to the participants (or your decision strategy – see Scenarios) to decide how the
improvements process is done.

 4.10.1 When can you invest?

There are several moments when you will typically invest in improvements:

• At the start of the game is a good moment to improve some things, to avoid big disasters and
financial losses.

• In general you invest when you have new revenue.

• But sometimes a serious incident can also be the trigger to invest in improvements, if you
still have the means, that is: the incident can already cause so much financial damage that
you might not have the financial means to improve the biggest flaw too…

But it does not have to be limited to these moments. Whenever you feel like improving and you
have the financial means, you can do so.

 4.10.2 Implementing improvements

If you choose to implement improvements too – not just spend the money and take the
improvement for granted – you will need to bring a green token into the game. For each
improvement you want to implement, you place green token on the “Queue here” spot.
If you have more than 1 activity you wish to improve, you need to remember these

activities. Therefore you take the cards of the next level of the activities and place them in the
middle of the board.

You can assign participants to work on these improvements instead of working on new features.
These improvements don’t have to follow the same cadence (flow and queue size) as indicated by
the Plan approach.

Once these green tokens reach the “Cash here” spot, you can place the card(s) of the activities on
their corresponding spot on the board.

 4.11 The game ends…
… when time’s up. That is the easiest bit. If you only have 1 hour to play, then the game ends after
that hour.

The game can end earlier if, due to bad luck and/or wrong decisions, you go bankrupt. That is too
bad. If you still have time, you can start all over again and hopefully learn from your mistakes.

Eventually, the game ends once you have reached the highest performance level at all activities. You
could continue, just to earn more money but what is the use if there are no more improvements to be
made?

Build – Run – Improve – Repeat .23

 4.12 How can I win this game?
Typical question you get when you use gamification, even if it is in a learning context: how can I
win? Well, you know how you can lose: when you go bankrupt. So not going bankrupt brings you 1
step closer to winning.

If you have more than 1 team playing, you can compare teams:

• performance levels of all the activities; you could calculate an average per stage, overall
average

• cash (even though this does not mean a lot, because one team could have invested more than
another, or had more bad luck and lost more on incidents)

• value created: how many features did you deliver in total? You can keep track of the number
of features you delivered, if you want to.

 5 Possible scenarios

 5.1 Dividing or sharing decisions, budget and costs

 5.1.1 Dividing

You could opt for dividing the starting budget among the participants. In a lot of companies this is
probably the case. Each participant decides how much of his/her starting budget will be spent to
improve their domain(s). This also means that you split the responsibilities: if anything goes wrong,
the participants sum up the cost to fix the issue in their own responsibility domain. This can be a
driver to improve within their responsibility domain, but on the other hand, the budget to be spent is
small… And what if one domain has bad luck and has no budget left to pay the cost of an incident?
Then you will need to agree with the other participants how to solve this. Maybe they will want to
divide the cost, but will also want to be part of the decision making for his/her domain(s)…

When you finish a (set of) feature(s), you will need to divide the revenue among the responsibility
domains and each participant can decide how much to invest and what domain to improve.

 5.1.2 Sharing

On the other hand, you can choose for the shared budget, shared responsibilities and shared
decisions. This is more like consent decision making of Sociocracy 3.0: you continue with an
action/decision, unless there is a good reason (objection) not to do so. You have a global budget and
you decide together, as a management team, which domains to improve first. In case of an incident,
the cost to fix that incident is paid with the global budget. And all revenue goes to the global budget
and again you decide together how much of the budget is invested and which domains will be
improved.

Build – Run – Improve – Repeat .24

 5.2 Start from performance level 0 or from your real
performance level
By default the game starts from performance level 0. This way you experience fully what the
importance is of certain investments. This is most likely the approach for sessions with a mixed
audience (e.g. on meetups, conferences, etc.). This means that every single increase in performance
requires investment and extra exposure to risks if you don’t have the financial means yet to do that
investment.

But for sessions with participants of the same organization, you can start from the actual
performance level: your current plan approach, your current code quality measurements, your
current test approach, your current deployment frequency and so on. This makes the game a bit
more realistic and the learning experience closer to your day to day situation.

 5.3 Force the team to implement features faster (and cut
corners)
It is not uncommon that a development team is under pressure to deliver features as fast as possible.
A possible reason is that the business wants to enter the market first with a certain feature, the beat
the competitors. This can create extra revenue, but to do this, the team may need to compromise on
quality.

As a facilitator you can say at a certain point that the new batch of features the team starts working
on, will need to be implemented as fast as possible. You don’t care how they do it, but is has to be
done faster. And you can promise them that they will get 50% more revenue per implemented
feature. This approach is especially interesting when you do a lot of manual quality checks, so that
the team will need to cut corners to be able to do this. But obviously this will result in technical
debt...

 5.4 Work to implement improvements or not
The green tokens are used for implementing improvements. Using these tokens makes the game
more realistic: you don’t just buy e.g. a new tool, you need to implement it and adapt your
processes. However, if your time is limited, you can omit the green tokens, just buy the
improvement and apply it immediately.

You can also choose to start the game without the need for implementing improvements, so that the
participants can get used to the game first. And after a while you can decide to introduce the need
for implementation work. It is up to you as a facilitator.

Build – Run – Improve – Repeat .25

 6 Thank you
A special thank you goes to the following people for providing inspiration for this game:

• Bart Blommaerts

• Olivier Costa

I would also like to thank the people who reviewed this document and gave feedback to improve the
game:

• Frederik Leijman

• Pieter Van Hees

• Robbert Valckeneers

• Sangeetha Sridhar

And off course to all the people who tried out this game and gave their feedback to improve the
game, or shared their experiences:

Herman Vandezande, Bart Vanhaeren, Roel Vankriekinge, Nele Van Beveren, Charles-Louis de
Maere, Jord Rolland de Rengervé, Shibu Chacko, Jan Pannecoeck, Jean-Noël Collin, Darek
Krzywania, Sven Dill, Rudy Mariën, Sébastien Barbieri, Dick Beverage, Jonas Dandois, Bieke
Meeussen and all others I might have forgotten here.

 7 Contact information
Build-Run-Improve-Repeat is a product of SimuLearn.

More information can be found on my web site: https://www.simu-learn.net

Koen Vastmans: https://www.linkedin.com/in/koenvastmans/

Build – Run – Improve – Repeat .26

https://www.linkedin.com/in/koenvastmans/
https://www.simu-learn.net/

